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ABSTRACT

Important to NASA’s Advanced Life Support program is
the development of an autonomous, dynamic, self-
contained bioregenerative life support system for
future, long duration spacecraft and space stations to
provide fresh food, air, water and to recycle waste
products. These systems will rely on plants to rejuvenate
the air and produce food through the process of
photosynthesis and purify water through the process of
transpiration. An intelligent, autonomous, reliable, and
robust control system must be developed and applied to
dynamically manage, control and optimize plant-based
life support functions to allow the efficient growth of
plants, providing the maximum amount of life essentials
while using minimal resources. System identification
and modeling of plant growth behavior must first be
developed to characterize plant growth functions in
order to develop an efficient control system.

We have developed an artificial neural network model to
characterize the photosynthesis process of soybean
crops under various environmental conditions. It is a 2-
layer feedforward neural network architecture which
inputs the crop type, age, and the environmental
conditions of the crop canopy: carbon dioxide level, light
intensity, temperature, and relative humidity and outputs
the predicted net photosynthesis or assimilation rate
produced under these conditions. The neural network
model was trained from controlled environment soybean
crop experiments conducted at Rutgers University in
New Brunswick, New Jersey where dynamic plant
responses over a range of environmental conditions
were collected. This paper will discuss in more detail the
motivation for developing the crop model, the neural
network model and performance and the crop
experiments and data collected by Rutgers University.

INTRODUCTION

Future spacecraft and space stations for long-term
space exploration and habitation will require an
autonomous, dynamic, self-contained bioregenerative
life support system to provide fresh food, air, and water
and to recycle waste products. One of the objectives of
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NASA's Advanced Life Support program is to develop
such a system that will achieve safe, reliable, and
efficient support of human crews.! In order to provide a
significant degree of self-sufficiency to allow the crew
members to conduct productive research and
exploration of space, future bioregenerative life support
systems will rely on plants to perform several functions.
Through the process of photosynthesis or assimilation,
plants remove carbon dioxide from the atmosphere and
produce oxygen while incorporating carbon into biomass
(food). Fresh water is released via the process of
transpiration. As shown in Figure 1, a multi-crop growth
chamber can be directly connected to crew areas to
dynamically rejuvenate air, purify water, and produce
food and reutilize waste. Understanding and optimally
controlling these dynamic functions associated with
assimilation, transpiration, biomass accumulation and
allocation, as well as the demands for resources
(resources recovered from wastes) is essential to
designing and managing long-term operation of
bioregenerative life support systems.“2
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Figure 1: Autonomous and dynamic bioregenerative life
support system.

An intelligent, autonomous, dynamic, reliable, and
robust control system must be developed and applied to
manage, control and optimize plant-based life support
functions.? This will allow efficient growth of plants to



provide the maximum amount of life essentials of air,
water, and food to a human crew using the minimal
amount of limited resources available in space. Since
the crew can be working, exercising, sleeping, as shown
on the left in Figure 1, and therefore dynamic, the
control system needed to support them also needs to be
dynamic and be able to adapt to their changing needs.
Traditional control systems using PID (Proportional,
Integral, Derivative) control methods are limited and will
not be able to efficiently and fully adapt to the life
support needs of a crew and their changing environment
without heavy buffering. Production of plants in one or
more controlled environments and their dynamic
interaction with crew areas must be carefully monitored
and controlled with limited or no buffering.

We are developing an artificial neural network control
system for use in bioregenerative life support systems.
The neural network system will examine the real-time
needs of a crew and then control the rates of various
plant physiological processes accordingly, by
manipulating the environment. As shown in the bottom
of Figure 2, the neural network control system will
determine how to optimally grow the plants with a
minimum amount of energy (number of lights,
photoperiod, nutrients, etc.) and with the available
resources (CO,, water, etc.) to produce the necessary
amount of oxygen, water, and food for the crew
members as required, specified, or determined by life
support needs.
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Figure 2: Approach to the development of an artificial
neural network plant model and control system.

To develop an efficient control system using artificial
neural networks for plant-based life support functions,
system identification and modeling of plant growth
behavior must first be accomplished since these
functions are dependent on plant performance.2 Current
physiology-based, mathematical crop models are very
limited. They usually only model a single process such
as photosynthesis or transpiration (and not both) for a
specific plant at a specific stage of growth under a
specific growing condition which is specific to a
particular growth  chamber. Furthermore, the
mathematical equations governing some of these
models, since they are low-order and rather simpilified,
make certain assumptions and do not fully characterize
all the multivariable interactions. As shown on the right

of Figure 1, a multicrop growth chamber with a variety
of different plants which are all growing at different
stages will probably be used as part of a bioregenerative
life support system. Certainly, a more complete,
complex, and system/chamber independent plant model
needs to be developed to characterize the behavior of
plants inside a multicrop chamber. Thus, we are
implementing neural network models characterizing
plant growth functions first (top of Figure 2). These plant
growth  (physiology) models will provide an
understanding of plant behavior necessary for the
development of a life support system model. They will
be able to better interpolate between various
environmental conditions and parameters and be able to
simulate short-term (less than a day) and long-term
(plant life cycle) responses and performance of various
plants. These models will also serve as tools to emulate
and provide sufficient amounts of data over an
adequately wider range of conditions and performance
for development and training of the neural network
control system.

As shown in Figure 2, the inputs to the neural network
models are the environmental conditions and
parameters and the outputs are the important products
(food, air, and water) needed for a crew produced as a
simulated response to the inputs. It should be noted that
the outputs of the plant model are the inputs to the
control system and likewise, the outputs of the control
system are inputs to the plant model. Thus, the control
system is an inverse of the plant model. Using neural
networks, this type of implementation is not difficult to
develop.

ARTIFICIAL NEURAL NETWORK CROP MODEL

Inspired by biological systems, artificial neural networks
are highly parallel data processing systems and are
particularly suited to "learn” ill-defined or fuzzy input-
output relationships and to perform adaptive
interpolations.> With their capability to learn from
experience rather than be cast in preset rules, neural
networks are capable of easily performing many tasks
that conventional regression techniques and traditional
artificial intelligence systems find difficult or impossible
to solve. Artificial neural networks with their ability to
learn and approximate arbitrary nonlinear input-output
relationships from a collection of examples are very
suitable for dynamic modeling, identification, and
characterizing plant-based life support processes. They
can be ftrained to simulate complex, nonlinear,
multimodal, multivariable functions that will be able to
better interpolate between various conditions and
parameters. Thus, artificial neural networks may be
ideally suited as an intelligent computational
methodology that would assimilate a variety of
environmental inputs and parameters and efficiently and
autonomously control and optimize the growth of crop
plants.

The potential benefits of neural networks extend beyond
the high computation rates provided by massive



parallelism. They provide a greater degree of fault
tolerance toward variations with input signals.* Neural
network learning algorithms adapt their synaptic
connection weights in time to improve performance
based on the current results. Adaptation provides a
degree of robustness by compensating for minor
variations in the inputs as well as in the characteristics
of the neurons. Traditional statistical techniques are not
adaptive, typically processing all ftraining data
simuitaneously before being given new data. Neural
network classifiers are also non-parametric and make
weaker assumptions concerning the shapes of
underlying distributions than traditional statistical
classifiers.* They may thus prove to be more robust and
realistic when distributions are generated by nonlinear
processes and are strongly non-Gaussian.*

A neural network is characterized by its pattern of
connections between the neurons (architecture), its
neuron function, and its method of determining the
weights on the connections (training or learning
algorithm). In general, the architecture can be defined
as an interconnection (network) of neurons such that
neuron outputs are connected, through synaptic weights,
to other neurons. The synaptic weights represent
information being used by the network to solve a
problem.

The artificial neural network developed to model plant
growth is shown in Figure 3. It uses a traditional
feedforward neural network structure. In a feedforward
architecture, all the inputs are fed to a layer of neurons
through synaptic weights (represented by the connecting
lines in Figure 3) in such a way that each input is fed to
all of the neurons. Similarly each neuron in this layer is
connected to each neuron of the next layer through
synaptic weights. The layer may be similarly connected
to another layer which may be the final layer giving the
resulting outputs and thus called the output layer. The
intermediate layers between the inputs and the output
layer are termed hidden layers. This type of architecture
is a feedforward network because of the forward flow of
signals. The neural network plant model is a 2-layer
network with a single hidden layer and an output layer.
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Figure 3: Artificial neural network plant model.

The neural network uses 10 neurons (represented by
circles in Figure 3) in the hidden layer and 3 neurons on

the output layer. The neuron is a simple processing
node with synaptic input connections and a single
output. The basic operation of an artificial neuron
involves summing its weighted input signals
(representing synaptic strength) and applying a
nonlinear output, or activation function. The summed
value determines the activation level of the neuron. The
activation function used in our network is a bipolar
sigmoidal function and thus, the output of a neuron is a
value between -1 and 1. This means that the external
inputs to the network need to be scaled to a value within
this range of -1 and 1 and the results of the output
neuron must also be scaled or interpreted appropriately
to the proper range.

The inputs to the neural network plant model are the
environmental conditions of the chamber or crop
canopy: carbon dioxide level, light intensity,
temperature, and relative humidity as well as the age of
the crop and the crop type, a total of 6 inputs as shown
in Figure 3. The neural network model simulates the
plant response to these conditions and outputs the net
photosynthesis or assimilation rate of the plant.
Although our current plant model only models the
assimilation process, it is shown in Figure 3 with dotted
lines/connections that the neural network can easily be
expanded to also model the plant transpiration and
allocation functions.

Four crop processes have been identified as critical to
plant-based life support systems operation.>®
Transpiration is the process of water production by the
plant, taking up water from the root zone and
evaporating pure water from the leaves. Assimilation is
the process of CO, removal from the gaseous
atmosphere and the concomitant release of O; by the
plant. Allocation is the distribution of photosynthate fixed
during assimilation to the various plant parts. High yield
efficiencies are the result of allocation of significant
biomass to the harvested food product and not the roots,
shoots or leaves. Nutrient and water demand set the
requirements for recovery of these crop production
inputs. Taken together these key processes result in a
complete plant-based life support system package which
can be highly reliable and controllable.

Our current neural network model was designed only
for the net photosynthesis process of a crop, as a start,
which is a combination of the assimilation and
respiration processes. This process is important and is
driven by the application of photosynthetic photon flux in
the presence of carbon dioxide and appropriate
temperature and nutrition. Since plants convert carbon
dioxide to plant biomass and oxygen through the
photosynthesis process, modeling and controlling this
process will facilitate the design of crop-based systems
for both air management and food production. A crew
member generates about one kilogram of carbon
dioxide per day which can be converted through crop
assimilation.” Furthermore, assimilation is a complex,
nonlinear, dynamic, and multivariable plant process
where not all relationships between various



environmental conditions and input sensor parameters
are well defined. Modeling this process will demonstrate
the capabilities of artificial neural networks.

CROP GROWTH EXPERIMENT AND DATA

While controlled environment c¢rop production
monitoring systems can generate huge amounts of data
regarding  environmental conditions and the
maintenance  of  set-points, typical controlled
environment production provide few data regarding the
dynamics and control of the plant-based life support
functions. It is the response of plant behavior over
ranges of environmental conditions that enable
prediction and lead to stable, autonomous control
systems. Unique data regarding the control and
response of critical life support related plant processes
must be generated and provided to develop such a
system.

In a collaboration with Rutgers University in New
Brunswick, New Jersey, part of the New Jersey - NASA
Specialized Center of Research and Training (NJ-
NSCORT) program, controlled environment soybean
crop experiments were conducted to collect dynamic
plant responses over a range of environmental
conditions to train the neural network model. They have
designed and constructed four acrylic plant growth
chambers housed in an environmentally controlled walk-
in chamber, shown in Figure 4, capable of monitoring
canopy net photosynthetic rates, dark respiration, and
water vapor flux.® In addition, the environment inside the
closed and controlled chamber can be monitored and
set at various levels.

Figure 4: Four acrylic plant growth chambers housed
inside an environmentally controlled walk-in chamber
designed and constructed to monitor canopy gas-
exchange at Rutgers University.

The design of the crop experiment involves setting the
environmental conditions inside the chamber to different
levels and measuring the net photosynthetic response of
the plant. The short-term experiment will last 48 hours
and will be conducted during the vegetative stage of

crop growth. The experiment will be a factorial design
with two levels of atmospheric CO, concentrations at
400 and 1000 vpm, three irradiances at 625 and 425
umol/m?/s and at no light, and three air temperatures at
22, 26, and 30°C as shown in Figure 5. The
environmental conditions for each combination of these
settings will be maintained for 2-hour period to allow
time for reaching a steady-state condition. Soybean
crops (cv. Hoyt) were chosen by Rutgers University for
this experiment. Figure 6 shows the soybean crops
during the short-term experiment.
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Figure 5: Experimental design with varying envi-
ronmental conditions.

Figure 6: Soybean crops for the short-term ékperiments.

The environment conditions: CO, concentration, light
intensity, temperature, and relative humidity were all
monitored and collected as shown in Figure 7a, 7b, 7c,
and 7d respectively. The raw data was filtered for any
anomalies or problems encountered during the
experiment. The CO, gas exchange rate representing
the net photosynthesis rate was also monitored as
shown in Figure 7e. The net photosynthesis is positive
during the light cycle representing the assimilation
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Figure 7: Data from soybean crop experiment: (a) CO;
concentration, (b} light intensity, (c) temperature, (d)
relative humidity, (e) net photosynthesis.

process and negative during the dark cycle representing
the respiration process.

RESULTS

The data from the soybean experiment was directly
used to train the artificial neural network model. The
data was split in half with every other data point used for
training and the other half used for verification. The
neural network architecture, as shown in Figure 3, was
trained using a modified error-backpropagation
(generalized delta rule) learning algorithm. The neural
network was initially trained on basic mathematical
(physiology) models of photosynthesis before being
trained on the experimental crop data. This initial
training establishes a framework and a baseline for the
neural network model. The experimental crop data is
then used to further expand and refine this model. Error-
backpropagation is one of the various methods available
to train a neural network architecture.>* It is a gradient
descent method to minimize the total squared error of
the output computed by the network. The training of the
network by backpropagation involves feeding the input
patterns through the network, determining the error
between the computed results of the output of the
network with their target values, and propagating this
error value back into the network by simultaneously
adjusting all the synaptic weight connections so that
next time the resulting outputs for the same input
pattern are closer to their targeted values. This process
is iterated numerous times until the network converges
on the solution of the problem and the associated error
at the output is minimized.

The neural network was trained for over 150,000
iterations until the total squared error of the output of the
network was less than 0.7. With this training, the
artificial neural network was able to learn to approximate
the photosynthesis process. The neural network model
was simulated with the verification data and the resuits
are shown in Figure 8 where the model predicted results
of the photosynthesis rate is overlaid on the



experimental data. This demonstrates that the artificial
neural network was able to successfully model the
photosynthesis process of soybean crops and was able
to closely predict the photosynthetic rate under the
current environmental conditions.
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Figure 8: Results of the neural network photosynthesis
model.

CONCLUSION AND FUTURE WORK

A 2-layer feedforward neural network architecture was
developed to model the assimilation or photosynthesis
process for soybean crops under various environmental
conditions. The inputs to the neural network model are
the crop type, age, and the environmental conditions:
carbon dioxide level, light intensity, temperature, and
relative humidity of the crop canopy. The neural network
model then simulates the net photosynthesis or
assimilation rate produced under these conditions.

The neural network soybean model was developed and
trained from controlled environment soybean crop
experiments conducted at Rutgers University in New
Brunswick, New Jersey where dynamic plant responses
over a range of environmental conditions were
collected. Although this model, trained on this data, can
interpolate between these environmental conditions, it is
still limited to within these ranges. However, more
soybean crop experiments are currently being
conducted at Rutgers University.® Some of this data will
be used to independently validate the existing neural
network models. In addition, short-term experiments are
being repeated on other stages of crop growth. Long-
term experiments lasting 90-days (full life-cycle) with
different light intensities and CO, levels are being
conducted simuitaneously. Transpiration data are also
being coliected in these experiments. The preliminary
neural network soybean model can easily be expanded
to incorporate the transpiration process and can be
augmented with further training of the new crop
experiment data. However, the current soybean model
demonstrates the potential of how neural networks can
model these complex plant processes.

This neural network plant model will lead to the
development of a intelligent, autonomous neural
network control system that will be able to dynamically
manage, control and optimize plant-based life support
functions to allow the efficient growth of plants in a
bioregenerative life support system.
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